## Warm Mix Asphalt Technology

Northeast Asphalt User-Producer Group October 24, 2003 Wilkes-Barre, Pennsylvania

## Advantages of Lower Temperatures

- Lower fumes
- Lower plant emissions
- Lower energy consumption
- Lower plant wear
- Decreased binder aging

## **Available Technologies**

- Materials Processing
   Foamed asphalt
- Additives
  - Mineral
  - Organic

## Warm Asphalt Mix (WAM) Foam

## What WAM Foam is NOT

- 'New' asphalt cement
- 'Old' foamed asphalt technology
- Emulsified asphalt cement system
- Base Layer Stabilization
- Miracle

### What WAM Foam Is

 Joint Development between Shell and Kolo Veidekke a.s to produce asphalt pavements at lower operating temperature

#### aggregate addition sequence method



Courtesy IFTA GmbH

#### Two phase bitumen mixing method



Courtesy IFTA GmbH

## Goals for <u>Warm Asphalt Mix</u> WAM

- Lower production temperatures of Hot Mix Asphalt
- Use existing Hot Mix Asphalt plants
- To meet existing standards for Hot Mix Asphalt specifications
- Focus on dense graded mixes for wearing courses
- WAM quality = Hot Mix Asphalt quality

Towards lower temperatures -asphalt cement rheology-

Hot mixtures

 $\Delta T = 30 c = 0^{\circ} F Werkney lity - additives$  Or  $\Delta T = 100 - 140^{\circ} F W A M F o am$ process

**Cold mixtures - emulsions - foamed bitumen** 

## WAM Positioning



## Field trials in Norway 1996



## WAM Emulsion Hunndalen



## WAM Foam installation in an Asphalt Batch-Plant



## Road 120 Hobøl Rut Depth





#### HMA vs. WAM-Foam



## WAM Foam in Drum Mix Plants 2001



## WAM Foam, FV 82 Frogn – Nesodden September 2001



# What have we achieved with WAM Foam?

- 30 % reduction in energy consumption,
- 30 % reduction in CO<sub>2</sub>-emissions,
- 50 60 % reduction in dust emission,
- Fume from WAM Foam is below detection limits

## **Additional Benefits**

- Reduced energy consumption
- Reduced temperature => reduced binder oxidation
- Production rate is maintained
- No problems with humidity observed in drum mixer
   some humidity in the stack of batch plant
- Reduced production temperature => reduced wear



# Warm Asphalt Mixes by adding aspha-min<sup>®</sup>, a synthetic zeolite

## Zeolite

Zeolites: crystalline hydrated aluminium silicates.

aspha-min<sup>®</sup>, is added (0.3%) to the HMA in the 100 to 200 °C (212 to 392 °F) temperature range

## Granulated aspha-min®



# Production of warm asphalt mix

No modifications to mix design are required. Aspha-min<sup>®</sup> is considered as an additive to increase workability at low temperatures. Mixing temperature of between 130 and 145°C (266 to 293°F) possible.

#### How zeolite works

Vapor is created by adding asphamin<sup>®</sup> to pre-heated mixture of sand and stone at the same time as apshalt is being introduced.

## Adding aspha-min<sup>®</sup>



## Manual Feed



### **Reduction of Emissions**

Reduction of 30 – 35 °C (about 55 °F) the energy consumption was reduced by 30 %.

In Germany, 65 million tons of HMA are produced annually results in a reduction of 400,000 tons of CO<sub>2</sub>.

## CO<sub>2</sub> Measurement at the plant



## **Reduction of Emissions**

Using a 65 pen binder in the mix at a temperature of 168 °C (340 °F) an emission of 350 mg/ m<sup>3</sup> fumes and aerosols was determined.

At a productions temperature of 142 °C (285 °F) where zeolite had been added, 90 mg/m<sup>3</sup>

Reducing temp by 26 °C (47 °F) created a reduction in fume emissions of 75 %.

At the application site a 35 °C reduction resulted in as low as 1/10 of the equivalent fume level.

## Testing at Mixing Plant (1) 65 pen vs. 65 pen with aspha-min<sup>®</sup>



Aero sols



°/C

nghi

## Workability

All mixes produced at lower temperatures handled the same way as traditional mixes and obtained comparable density.

## Organic Additives Sasobit

Two classes:

synthetic Fischer-Tropsch paraffin waxes

•low molecular weight ester compounds

#### Fischer-Tropsch paraffins are

long-chained aliphatic hydrocarbons
from coal gasification
with the Fischer-Tropsch process

|                               | Bitumen wax | Synthetic wax |
|-------------------------------|-------------|---------------|
| Melting point, <sup>°</sup> C | 70          | 100           |
| Penetration at 25 °C,         | 120         | < 1           |
| 0,1 mm                        |             |               |
| Viscosity at 135 °C           | 8           | 15            |
| mm² /s                        |             |               |
| Average molecular             | 800         | 1600          |
| weight, g / mol               |             |               |
| n-paraffins, %                | 14          | 73            |



#### Ester additives are:

#### - Coal wax

- consists mainly of esters from fat acids and wax alcohols
- produced by toluene extraction of brown coal

Average molecular weight: 510 g /mol

#### How organic additives work



temperature

#### Influence of organic additives (FT)



Penetration: "Viscosity at room temperature" Softening point: "Melting point"

#### Influence of organic additives (FT)



#### Influence of organic additives (FT)



#### Experiences with organic additives

Up to 5 years experience: **Positive laboratory results** coincide with field experience

#### Experiences with organic additives



## Conclusions

- Success in Europe = Success in U.S.?
- Long-Term Performance?
- Cost Benefit?
- Definite Reduction in Emissions
- Definite Reduction in Fumes
- Definite Reduction in Energy
   Consumption

## Activities

World of Asphalt Demo – Mar 2004

NCAT Study